0的n次方等于多少(n次方根及无理数的近似值求解)
2024-11-13 10:03:27
1 知识梳理(以n次方根为例)
一个数x的n次方(n是大于1的整数)等于a,那么这个数x叫做a的n次方根。
当n为奇数时,x叫做a的奇次方根;当n为偶数时,x叫做a的欧次方根。
正数a的奇次方根是正数;负数的a的奇次方根是负数。
正数a的偶次方根有2个,它们互为相反数;负数没有偶次方根。
0的n次方根等于它本身。

2 常见值的n次方根计算
注意:一定要注意根指数和被开方数符号

3 平方根或立方根的估算
- 若正数的被开方数扩大100倍或缩小100倍,则其算术平方根扩大10倍或缩小10倍


- 若一个数的被开方数扩大1000倍或缩小1000倍,则其立方根扩大10倍或缩小10倍


4 无理数的整数部分和小数部分
确定好无理数的在某两个整数的范围,即可求出该无理数的整数部分和小数部分。

5 如何估算无理数的近似值
- 利用“平均法”估算无理数的近似值

利用逼近的思想,确定十分位和百分位的数值

- 利用“公式法1”估算无理数的近似值

- 利用“公式法2”估算无理数的近似值



结论:已知非负数a,b,n,若a<<a+1,求m=a^2+1,则
- 近似值规律归纳法
设无理数为√x,比它小且能开方的最近的一个完全平方数为√a,则其近似值可以用以下表达式表示:
(√x-√a)/(x-a)<=1/2√a
√x<=√a+(x-a)/2√a
√x<=(x+a)/2√a
即:√x≈(x+a)/2√a
实例:
(1)求√5的近似值
(3)求√17的近似值。
根据上述表达式,x=17,a=16,则:
√17<=(17+16)/2*4
√17≈33/8=4.125.
通过计算器计算√17≈4.123,通过比较,近似值很接近。